Stable sparse subspace embedding for dimensionality reduction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Embedding: A Framework for Sparsity Promoting Dimensionality Reduction

We introduce a novel framework, called sparse embedding (SE), for simultaneous dimensionality reduction and dictionary learning. We formulate an optimization problem for learning a transformation from the original signal domain to a lower-dimensional one in a way that preserves the sparse structure of data. We propose an efficient optimization algorithm and present its non-linear extension base...

متن کامل

The Elastic Embedding Algorithm for Dimensionality Reduction

We propose a new dimensionality reduction method, the elastic embedding (EE), that optimises an intuitive, nonlinear objective function of the low-dimensional coordinates of the data. The method reveals a fundamental relation betwen a spectral method, Laplacian eigenmaps, and a nonlinear method, stochastic neighbour embedding; and shows that EE can be seen as learning both the coordinates and t...

متن کامل

Dimensionality Reduction for Sparse and Structured Matrices

Dimensionality reduction has become a critical tool for quickly solving massive matrix problems. Especially in modern data analysis and machine learning applications, an overabundance of data features or examples can make it impossible to apply standard algorithms efficiently. To address this issue, it is often possible to distill data to a much smaller set of informative features or examples, ...

متن کامل

Sparse Unsupervised Dimensionality Reduction Algorithms

Principal component analysis (PCA) and its dual—principal coordinate analysis (PCO)—are widely applied to unsupervised dimensionality reduction. In this paper, we show that PCA and PCO can be carried out under regression frameworks. Thus, it is convenient to incorporate sparse techniques into the regression frameworks. In particular, we propose a sparse PCA model and a sparse PCO model. The for...

متن کامل

Dimensionality Reduction with Subspace Structure Preservation

Modeling data as being sampled from a union of independent subspaces has been widely applied to a number of real world applications. However, dimensionality reduction approaches that theoretically preserve this independence assumption have not been well studied. Our key contribution is to show that 2K projection vectors are sufficient for the independence preservation of any K class data sample...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Knowledge-Based Systems

سال: 2020

ISSN: 0950-7051

DOI: 10.1016/j.knosys.2020.105639